Problem Statement
Let ~S(n)~ denote the sum of the digits in the decimal notation of ~n~ . For example, ~S(123) = 1 + 2 + 3 = 6~ .
We will call an integer ~n~ a Snuke number when, for all positive integers ~m~ such that ~m > n~ , ~\frac{n}{S(n)} \leq \frac{m}{S(m)}~ holds.
Given an integer ~K~ , list the ~K~ smallest Snuke numbers.
Constraints
- ~1 \leq K~
- The ~K~ -th smallest Snuke number is not greater than ~10^{15}~ .
Input
Input is given from Standard Input in the following format:
~K~
Output
Print ~K~ lines. The ~i~ -th line should contain the ~i~ -th smallest Snuke number.
Sample Input 1
10
Sample Output 1
1
2
3
4
5
6
7
8
9
19
Comments