Problem Statement
A function ~f(x)~ defined for non-negative integers ~x~ satisfies the following conditions.
- ~f(0) = 1~ .
- ~f(k) = f(\lfloor \frac{k}{2}\rfloor) + f(\lfloor \frac{k}{3}\rfloor)~ for any positive integer ~k~ .
Here, ~\lfloor A \rfloor~ denotes the value of ~A~ rounded down to an integer.
Find ~f(N)~ .
Constraints
- ~N~ is an integer satisfying ~0 \le N \le 10^{18}~ .
Input
The input is given from Standard Input in the following format:
~N~
Output
Print the answer.
Sample Input 1
2
Sample Output 1
3
We have ~f(2) = f(\lfloor \frac{2}{2}\rfloor) + f(\lfloor \frac{2}{3}\rfloor) = f(1) + f(0) =(f(\lfloor \frac{1}{2}\rfloor) + f(\lfloor \frac{1}{3}\rfloor)) + f(0) =(f(0)+f(0)) + f(0)= 3~ .
Sample Input 2
0
Sample Output 2
1
Sample Input 3
100
Sample Output 3
55
Comments